Copied to
clipboard

G = C23.473C24order 128 = 27

190th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.473C24, C24.337C23, C22.1932- (1+4), C22.2562+ (1+4), C425C419C2, (C2×C42).69C22, C23.158(C4○D4), (C22×C4).105C23, (C23×C4).120C22, C23.8Q8.32C2, C23.Q8.14C2, C23.34D4.19C2, C23.11D4.19C2, C23.83C2343C2, C23.63C2390C2, C23.65C2390C2, C24.C22.32C2, C2.54(C22.45C24), C2.C42.209C22, C2.28(C22.33C24), C2.43(C22.50C24), C2.67(C22.46C24), C2.61(C22.47C24), C2.84(C23.36C23), (C4×C4⋊C4)⋊99C2, (C4×C22⋊C4).64C2, (C2×C4).858(C4○D4), (C2×C4⋊C4).320C22, C22.349(C2×C4○D4), (C2×C22⋊C4).189C22, SmallGroup(128,1305)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.473C24
C1C2C22C23C22×C4C23×C4C4×C22⋊C4 — C23.473C24
C1C23 — C23.473C24
C1C23 — C23.473C24
C1C23 — C23.473C24

Subgroups: 372 in 206 conjugacy classes, 92 normal (82 characteristic)
C1, C2 [×7], C2 [×2], C4 [×18], C22 [×7], C22 [×10], C2×C4 [×8], C2×C4 [×42], C23, C23 [×2], C23 [×6], C42 [×6], C22⋊C4 [×11], C4⋊C4 [×14], C22×C4 [×14], C22×C4 [×5], C24, C2.C42 [×16], C2×C42 [×4], C2×C22⋊C4 [×6], C2×C4⋊C4 [×8], C23×C4, C4×C22⋊C4, C4×C4⋊C4, C23.34D4, C425C4, C23.8Q8, C23.63C23 [×3], C24.C22 [×2], C23.65C23, C23.Q8, C23.11D4, C23.83C23 [×2], C23.473C24

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], C4○D4 [×10], C24, C2×C4○D4 [×5], 2+ (1+4), 2- (1+4), C23.36C23 [×2], C22.33C24, C22.45C24, C22.46C24, C22.47C24, C22.50C24, C23.473C24

Generators and relations
 G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=e2=ca=ac, g2=b, ab=ba, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Smallest permutation representation
On 64 points
Generators in S64
(1 10)(2 11)(3 12)(4 9)(5 37)(6 38)(7 39)(8 40)(13 52)(14 49)(15 50)(16 51)(17 46)(18 47)(19 48)(20 45)(21 43)(22 44)(23 41)(24 42)(25 54)(26 55)(27 56)(28 53)(29 60)(30 57)(31 58)(32 59)(33 64)(34 61)(35 62)(36 63)
(1 26)(2 27)(3 28)(4 25)(5 23)(6 24)(7 21)(8 22)(9 54)(10 55)(11 56)(12 53)(13 60)(14 57)(15 58)(16 59)(17 62)(18 63)(19 64)(20 61)(29 52)(30 49)(31 50)(32 51)(33 48)(34 45)(35 46)(36 47)(37 41)(38 42)(39 43)(40 44)
(1 12)(2 9)(3 10)(4 11)(5 39)(6 40)(7 37)(8 38)(13 50)(14 51)(15 52)(16 49)(17 48)(18 45)(19 46)(20 47)(21 41)(22 42)(23 43)(24 44)(25 56)(26 53)(27 54)(28 55)(29 58)(30 59)(31 60)(32 57)(33 62)(34 63)(35 64)(36 61)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 45 3 47)(2 17 4 19)(5 58 7 60)(6 32 8 30)(9 48 11 46)(10 20 12 18)(13 23 15 21)(14 42 16 44)(22 49 24 51)(25 64 27 62)(26 34 28 36)(29 37 31 39)(33 56 35 54)(38 59 40 57)(41 50 43 52)(53 63 55 61)
(2 27)(4 25)(5 39)(6 44)(7 37)(8 42)(9 54)(11 56)(14 57)(16 59)(17 33)(18 45)(19 35)(20 47)(21 41)(22 38)(23 43)(24 40)(30 49)(32 51)(34 63)(36 61)(46 64)(48 62)
(1 31 26 50)(2 59 27 16)(3 29 28 52)(4 57 25 14)(5 63 23 18)(6 33 24 48)(7 61 21 20)(8 35 22 46)(9 30 54 49)(10 58 55 15)(11 32 56 51)(12 60 53 13)(17 40 62 44)(19 38 64 42)(34 43 45 39)(36 41 47 37)

G:=sub<Sym(64)| (1,10)(2,11)(3,12)(4,9)(5,37)(6,38)(7,39)(8,40)(13,52)(14,49)(15,50)(16,51)(17,46)(18,47)(19,48)(20,45)(21,43)(22,44)(23,41)(24,42)(25,54)(26,55)(27,56)(28,53)(29,60)(30,57)(31,58)(32,59)(33,64)(34,61)(35,62)(36,63), (1,26)(2,27)(3,28)(4,25)(5,23)(6,24)(7,21)(8,22)(9,54)(10,55)(11,56)(12,53)(13,60)(14,57)(15,58)(16,59)(17,62)(18,63)(19,64)(20,61)(29,52)(30,49)(31,50)(32,51)(33,48)(34,45)(35,46)(36,47)(37,41)(38,42)(39,43)(40,44), (1,12)(2,9)(3,10)(4,11)(5,39)(6,40)(7,37)(8,38)(13,50)(14,51)(15,52)(16,49)(17,48)(18,45)(19,46)(20,47)(21,41)(22,42)(23,43)(24,44)(25,56)(26,53)(27,54)(28,55)(29,58)(30,59)(31,60)(32,57)(33,62)(34,63)(35,64)(36,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,45,3,47)(2,17,4,19)(5,58,7,60)(6,32,8,30)(9,48,11,46)(10,20,12,18)(13,23,15,21)(14,42,16,44)(22,49,24,51)(25,64,27,62)(26,34,28,36)(29,37,31,39)(33,56,35,54)(38,59,40,57)(41,50,43,52)(53,63,55,61), (2,27)(4,25)(5,39)(6,44)(7,37)(8,42)(9,54)(11,56)(14,57)(16,59)(17,33)(18,45)(19,35)(20,47)(21,41)(22,38)(23,43)(24,40)(30,49)(32,51)(34,63)(36,61)(46,64)(48,62), (1,31,26,50)(2,59,27,16)(3,29,28,52)(4,57,25,14)(5,63,23,18)(6,33,24,48)(7,61,21,20)(8,35,22,46)(9,30,54,49)(10,58,55,15)(11,32,56,51)(12,60,53,13)(17,40,62,44)(19,38,64,42)(34,43,45,39)(36,41,47,37)>;

G:=Group( (1,10)(2,11)(3,12)(4,9)(5,37)(6,38)(7,39)(8,40)(13,52)(14,49)(15,50)(16,51)(17,46)(18,47)(19,48)(20,45)(21,43)(22,44)(23,41)(24,42)(25,54)(26,55)(27,56)(28,53)(29,60)(30,57)(31,58)(32,59)(33,64)(34,61)(35,62)(36,63), (1,26)(2,27)(3,28)(4,25)(5,23)(6,24)(7,21)(8,22)(9,54)(10,55)(11,56)(12,53)(13,60)(14,57)(15,58)(16,59)(17,62)(18,63)(19,64)(20,61)(29,52)(30,49)(31,50)(32,51)(33,48)(34,45)(35,46)(36,47)(37,41)(38,42)(39,43)(40,44), (1,12)(2,9)(3,10)(4,11)(5,39)(6,40)(7,37)(8,38)(13,50)(14,51)(15,52)(16,49)(17,48)(18,45)(19,46)(20,47)(21,41)(22,42)(23,43)(24,44)(25,56)(26,53)(27,54)(28,55)(29,58)(30,59)(31,60)(32,57)(33,62)(34,63)(35,64)(36,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,45,3,47)(2,17,4,19)(5,58,7,60)(6,32,8,30)(9,48,11,46)(10,20,12,18)(13,23,15,21)(14,42,16,44)(22,49,24,51)(25,64,27,62)(26,34,28,36)(29,37,31,39)(33,56,35,54)(38,59,40,57)(41,50,43,52)(53,63,55,61), (2,27)(4,25)(5,39)(6,44)(7,37)(8,42)(9,54)(11,56)(14,57)(16,59)(17,33)(18,45)(19,35)(20,47)(21,41)(22,38)(23,43)(24,40)(30,49)(32,51)(34,63)(36,61)(46,64)(48,62), (1,31,26,50)(2,59,27,16)(3,29,28,52)(4,57,25,14)(5,63,23,18)(6,33,24,48)(7,61,21,20)(8,35,22,46)(9,30,54,49)(10,58,55,15)(11,32,56,51)(12,60,53,13)(17,40,62,44)(19,38,64,42)(34,43,45,39)(36,41,47,37) );

G=PermutationGroup([(1,10),(2,11),(3,12),(4,9),(5,37),(6,38),(7,39),(8,40),(13,52),(14,49),(15,50),(16,51),(17,46),(18,47),(19,48),(20,45),(21,43),(22,44),(23,41),(24,42),(25,54),(26,55),(27,56),(28,53),(29,60),(30,57),(31,58),(32,59),(33,64),(34,61),(35,62),(36,63)], [(1,26),(2,27),(3,28),(4,25),(5,23),(6,24),(7,21),(8,22),(9,54),(10,55),(11,56),(12,53),(13,60),(14,57),(15,58),(16,59),(17,62),(18,63),(19,64),(20,61),(29,52),(30,49),(31,50),(32,51),(33,48),(34,45),(35,46),(36,47),(37,41),(38,42),(39,43),(40,44)], [(1,12),(2,9),(3,10),(4,11),(5,39),(6,40),(7,37),(8,38),(13,50),(14,51),(15,52),(16,49),(17,48),(18,45),(19,46),(20,47),(21,41),(22,42),(23,43),(24,44),(25,56),(26,53),(27,54),(28,55),(29,58),(30,59),(31,60),(32,57),(33,62),(34,63),(35,64),(36,61)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,45,3,47),(2,17,4,19),(5,58,7,60),(6,32,8,30),(9,48,11,46),(10,20,12,18),(13,23,15,21),(14,42,16,44),(22,49,24,51),(25,64,27,62),(26,34,28,36),(29,37,31,39),(33,56,35,54),(38,59,40,57),(41,50,43,52),(53,63,55,61)], [(2,27),(4,25),(5,39),(6,44),(7,37),(8,42),(9,54),(11,56),(14,57),(16,59),(17,33),(18,45),(19,35),(20,47),(21,41),(22,38),(23,43),(24,40),(30,49),(32,51),(34,63),(36,61),(46,64),(48,62)], [(1,31,26,50),(2,59,27,16),(3,29,28,52),(4,57,25,14),(5,63,23,18),(6,33,24,48),(7,61,21,20),(8,35,22,46),(9,30,54,49),(10,58,55,15),(11,32,56,51),(12,60,53,13),(17,40,62,44),(19,38,64,42),(34,43,45,39),(36,41,47,37)])

Matrix representation G ⊆ GL6(𝔽5)

100000
010000
004000
000400
000010
000001
,
100000
010000
004000
000400
000040
000004
,
400000
040000
001000
000100
000040
000004
,
300000
030000
003200
000200
000001
000040
,
330000
020000
002000
004300
000001
000040
,
100000
340000
001000
002400
000010
000004
,
400000
040000
003000
001200
000020
000002

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,2,2,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[3,0,0,0,0,0,3,2,0,0,0,0,0,0,2,4,0,0,0,0,0,3,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[1,3,0,0,0,0,0,4,0,0,0,0,0,0,1,2,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,3,1,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2] >;

38 conjugacy classes

class 1 2A···2G2H2I4A···4H4I···4X4Y4Z4AA4AB
order12···2224···44···44444
size11···1442···24···48888

38 irreducible representations

dim1111111111112244
type+++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2C4○D4C4○D42+ (1+4)2- (1+4)
kernelC23.473C24C4×C22⋊C4C4×C4⋊C4C23.34D4C425C4C23.8Q8C23.63C23C24.C22C23.65C23C23.Q8C23.11D4C23.83C23C2×C4C23C22C22
# reps11111132111216411

In GAP, Magma, Sage, TeX

C_2^3._{473}C_2^4
% in TeX

G:=Group("C2^3.473C2^4");
// GroupNames label

G:=SmallGroup(128,1305);
// by ID

G=gap.SmallGroup(128,1305);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,568,758,723,675,136]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=e^2=c*a=a*c,g^2=b,a*b=b*a,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽